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ABSTRACT

This paper compares the performance of various data processing methods in terms of predictive
performance for structured data. This paper also seeks to identify and recommend preprocessing
methodologies for tree-based binary classification models, with a focus on eXtreme Gradient Boost-
ing (XGBoost) models. Three data sets of various structures, interactions, and complexity were
constructed, which were supplemented by a real-world data set from the Lending Club. We compare
several methods for feature selection, categorical handling, and null imputation. Performance is
assessed using relative comparisons among the chosen methodologies, including model prediction
variability. This paper is presented by the three groups of preprocessing methodologies, with each
section consisting of generalized observations. Each observation is accompanied by a recommenda-
tion of one or more preferred methodologies.

Among feature selection methods, permutation-based feature importance, regularization, and XG-
Boost’s feature importance by weight are not recommended. The correlation coefficient reduction
also shows inferior performance. Instead, XGBoost importance by gain shows the most consistency
and highest caliber of performance. Categorical featuring encoding methods show greater discrim-
ination in performance among data set structures. While there was no universal “best” method, fre-
quency encoding showed the greatest performance for the most complex data sets (Lending Club),
but had the poorest performance for all synthetic (i.e., simpler) data sets. Finally, missing indicator
imputation dominated in terms of performance among imputation methods, whereas tree imputation
showed extremely poor and highly variable model performance.

Keywords feature selection · categorical encoding · null imputation · preprocessing · xgboost
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1 Introduction

Over the past decade, large banks and fintechs have become increasingly reliant on data analytics and machine learn-
ing to make informed decisions regarding safe and effective money lending to consumers. With companies pouring
millions of dollars into data collection and infrastructure resources, a record volume of data is flowing into models and
decision engines that have a direct impact on revenue and losses. To ensure the quality and utility of this data, data sci-
entists have developed hundreds of techniques to apply to their input data sets, squeezing out maximum performance
of their models. These techniques are commonly referred to as “preprocessing.”

Our goal in this paper is to identify and explain behaviors observed for a variety of preprocessing methodologies
across three distinct categories: feature selection, categorical encoding, and null imputation. We explore the empirical
behavior of popular preprocessing methods to provide a deeper understanding of the selected methodologies.

While the tangible results from this paper are the empirical observations and recommendations made for feature se-
lection, categorical encoding, and null imputation methods, the work completed here lays the forward-looking founda-
tion to conduct future investigation in similar or adjacent areas.2 We tested the following preprocessing methodologies.
Please refer to Appendix C for more details on each of the methods used.

Feature Selection Methods Categorical Encoding Methods Null Imputation Methods

Pearson correlation One-hot encoding Mean imputation
Spearman’s rank correlation Helmert coding Median imputation

XGB importance (weight and gain) Frequency encoding Missing indicator imputation
Regularization Binary encoding Decile imputation

Permutation-based importance Clustering imputation
RFE Decision tree imputation

Table 1: Preprocessing methodologies used in this study

We tested these methodologies on four different types of data sets; three synthetic data sets generated with varying
levels of complexity, and a real-world data set from Lending Club. Refer to Appendix B for details and methodology
behind these data sets.

Data Set Data Set Type

Linear Synthetic
GAM Global Synthetic

Jumpy GAM Local Synthetic
Lending Club Real-world

Table 2: Types of data sets used in this study

We introduce and discuss 10 observations and their associated implications in practical use. We list the main findings
below, grouped by the preprocessing methodology.

Feature Selection
Observation 1: The choice of feature selection method is trivial for simple data structures.

Observation 2: Permutation-based feature importance has high variability relative to other methods
for data that include local interactions, which suggests less stability among the identified feature subsets. We
do not recommend using permutation-based feature importance as the preferred feature selection method.

Observation 3: Regularization often chose more variables than necessary, resulting in a more complex
model with little to no gain in model performance. We do not recommend using regularization as the
preferred feature selection method.

2This study is the proof-of-concept of the innovative research that is currently in progress at 2nd Order Solutions. We work to
ensure our clients receive expert recommendations and knowledge, backed by empirical and academic research.
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Observation 4: If relying on XGBoost’s inherent feature importance, gain is preferred over weight.

Observation 5: XGB importance using gain shows the most consistent performance across a variety
of data structures.

Categorical Encoding
Observation 6: Frequency encoding performs poorly when data categories are structured and rigid, but works
well in data with more complex categorical variable relationships.

Observation 7: Helmert coding and OHE are related and hold categorical information in a similar
way, such that the trained model results in identical predictions and encoded feature importance, for tree-
based models. Either method are suitable options for categorical encoding, as both methods are comparable
in performance.

Null Imputation
Observation 8: Missing indicator imputation shows the greatest performance across all data sets for both
score value and variability, and is an excellent candidate for preferred null imputation method.

Observation 9: Single point imputation (i.e., decile, mean, and median imputation) all show very
similar performance.

Observation 10: Tree imputation has the most variable performance across data sets, and is not rec-
ommended for use.

2 Findings

2.1 Feature Selection

Observation 1: The choice of feature selection method is trivial for simple data structures.
The results from the three synthetic data sets suggest that the choice of feature selection method does not
necessarily matter in terms of AUC performance. In general, all feature selection methods more or less choose
the same subset of features, resulting in nearly identical performance across the compared methods (see
Figure 1). We would like to note two exceptions to this otherwise general observation. The two correlation

Figure 1: Comparison of feature selection methods for linear synthetic data set

reduction methods using Pearson’s and Spearman’s rank correlation coefficients are exceptions for both the
linear and jumpy GAM local data sets. We visualize the behavior for the linear data set in Figure 2. Note
that Figure 2 shows the same information that is seen in Figure 1, but with the addition of the correlation
coefficient reduction methods. We suspect that these show reduced performance due to the covariance matrix
we enforced across the ten variables. We do not see similar behavior for GAM global, as there are fewer
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Figure 2: Comparison of feature selection methods for linear synthetic data set with addition of the correlation coeffi-
cient reduction methods

variables, all of which interact globally with one another to a certain extent. Since no variables interact with
another variable in either the linear or jumpy GAM local data sets, any correlated pairs of variables are likely
dropping one of the pair of variables, rather than keeping both. In fact, we see this behavior for the first pair
of correlated features (i.e., features 0 and 1). Both correlation reduction methods drop feature 0 for jumpy
GAM local data, but keep feature 1.

Figure 3: Comparison of average feature ranking for correlated variables 0 and 1 across feature selection methods for
the three synthetic data sets

Observation 2: Permutation-based feature importance has high variability relative to other methods for data
that include local interactions, which suggests less stability among the identified feature subsets. We do
not recommend using permutation-based feature importance as the preferred feature selection method.

We observe the highest performance variability for variable selection via permutation-based feature impor-
tance for data sets that contain local feature interactions (i.e., jumpy GAM local and the LC data sets). Figure
4 shows increased performance variability for the LC data set. It is not observed in either linear or GAM
global data sets, as the effect of permuted features are distributed globally in both cases. If the data set
contains local interactions, the permutation will fundamentally change the underlying relationship and dis-
tribution of additive components within the data set, but is more dependent on the nature of the permutation.
For example, if the permutation is more or less similarly distributed to the original data set, the perceived
importance of the feature could appear to be less important than it actually is. On the other hand, if the per-
mutation distribution is very different than the original data distribution, then the importance of the feature
may be exaggerated. However, this will highly depend on both how the features are permuted as well as the
order of the features being permuted, which could change the features identified as high importance.

A consequence of the permutation algorithm is the high potential to include variables of no importance
or impact to the response variable. In these tests, permutation-based feature importance tended to include
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Figure 4: Comparison of feature selection methods for the Lending Club data set

known noise variables (i.e., variables that were not included in the underlying functional form). Figure 5
shows permutation incorrectly giving noise variable 13 a high average importance ranking for jumpy GAM
local.

Figure 5: Comparison of average feature importance ranking for noise variable 13 for the three synthetic data sets

Observation 3: Regularization often chose more variables than necessary, resulting in a more complex model
with little to no gain in model performance. We do not recommend using regularization as the pre-
ferred feature selection method.
We artificially enforced all methods to select the same number of variables, with the exception of regular-
ization. This is a key limitation of this study: artificially enforcing all methods to choose the same number
of variables for consistent comparison. Due to how regularization operates, the regularization method was
given free rein to include as many variables as it deemed appropriate. On average, we observed regularization
choosing nearly as many variables as it possibly could (i.e., it chose all values included in the data set).

While regularization does not overtly show signs of overfitting, we do see hints of overfitting behavior.
Here, we define overfitting as the gap between training and testing AUC. The larger the observed gap, the
greater the evidence of overfitting. Figure 6 shows the larger than usual gap between the training and testing
AUCs for regularization, which is on par with the performance seen when all features are included. In fact,
they are quite nearly the same, as uncontrolled regularization almost always chose to use all available features,
including noise (see Figure 5 for an example). This gap in training and testing AUCs is larger than any of the
other observed gaps for the other feature selection methods.

Observation 4: If relying on XGBoost’s inherent feature importance, gain is preferred over weight.
Gain is the relative improvement in predicted response, whereas weight is the number of times a feature is
used as splitting variable. We observed that features chosen using gain resulted in better model performance,
both in number and variability (see Figure 4 and Figure 7 for observed behavior in the LC and jumpy GAM
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Figure 6: Comparison of the gap between training and testing AUC for feature selection methods for jumpy GAM
local data set (correlation coefficient reduction methods were removed for better visualization)

local data sets, respectively). This behavior suggests that impact on response is a better indicator than fre-
quency of feature usage. In fact, XGB importance by weight was the third most likely feature selection

Figure 7: Comparison of feature selection methods for jumpy GAM local data set (correlation coefficient reduction
methods were removed for better visualization)

method to include noise variables. This indicates that noise variables were often used as splitting variables,
without adding to model performance. They were likely filler. Figure 8 demonstrates this behavior for noise
feature 24.

Observation 5: XGB importance using gain shows the most consistent performance across a variety of data
structures.
Across the four data sets considered in this study, XGB importance using gain shows consistently good
performance relative to the other methods. Although it is not necessarily the “best” method in most cases, the
performance variability shows dependable performance that ranks among the highest performers for all data
sets. For example, Figures 1 and 9 exhibit this behavior. Additionally, in all data sets, this method shows no
statistically significant difference in performance from the other highest ranking methodologies (see Figures
4 and 7 for examples).
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Figure 8: Comparison of average feature importance ranking for noise variable 24 for the three synthetic data sets

Figure 9: Comparison of feature selection methods for GAM global data set

2.2 Categorical Handling

Observation 6: Frequency encoding performs poorly when data categories are structured and rigid, but works
well in data with more complex categorical variable relationships.
Frequency encoding is the simplest method, as it adds the fewest additional variables to the data (i.e., a
single additional variable). We found that this encoding approach works poorly with a very rigid, structured
categorical data creation method.

Our categories across the three synthetic data sets were forced to be mutually exclusive, necessitating
the additional information provided by the three other encoding methods (i.e., OHE, binary encoding, and
Helmert coding) that allows for much clearer distinction among the categories. While we observed this
behavior in all three synthetic data sets, we use the results from the jumpy GAM local synthetic data set
as an illustrative example (see Figure 10). With the use of binary, Helmert and one-hot encoding, near
perfect AUC performance is achieved. Meanwhile, frequency encoding has a large drop in AUC performance
comparatively. We do not see the same phenomenon for the LC data, as there were ten categorical variables
that were fighting to be recognized (see Figure 11). In fact, we see the complete opposite behavior, which can
be explained by the addition of too many variables. Generally speaking, more variables does not necessarily
result in better model performance, which was observed for the LC data. The contextual clues available
across the categorical features from the frequency seemed to have allowed for improved model performance.

Observation 7: Helmert coding and OHE are related and hold categorical information in a similar way, such
that the trained model results in identical predictions and encoded feature importance, for tree-based
models. Either method are suitable options for categorical encoding, as both methods are comparable
in performance.
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Figure 10: Comparison of categorical encoding methods for jumpy GAM local synthetic data set

Figure 11: Comparison of categorical encoding methods for the Lending Club data set

When looking at linear and jumpy GAM local data sets, we observed that the control group, which uses
OHE, and the Helmert coding group had identical performance values. We investigated this further by pulling
individual models from each group and comparing their feature importance weights. Table 3 displays the total
number of times a variable was used for splitting within a tree (i.e., weight) made across all trees for a single
model. Note this table focuses on the encoded categorical features, with the splits for continuous and noise
features included in a limited capacity.

Feature Number of Splits
OHE Helmert Coding

Feature 0 137 137
Feature 1 147 147

...
...

...
Categorical 1 128 262
Categorical 2 134 127
Categorical 3 127 –

Table 3: Comparison of feature importance weights for models built using one-hot encoding and Helmert coding
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OHE and Helmert coding have identical weights, with the exception of the categorical features created by
their respective encoding method. OHE created three categorical features, with each feature denoting one
of the three categories in the original categorical variable. Helmert coding created two categorical features,
since each created feature inherently includes information to a reference category. In this case, the reference
category information is plainly shown as the combination of Categorical 1 and Categorical 2 from OHE.
Helmert coding is a way to simplify and reduce the number of added encoded features.

2.3 Null Imputations

Observation 8: Missing indicator imputation shows the greatest performance across all data sets for both score
value and variability, and is an excellent candidate for preferred null imputation method.
Missing indicator imputation allows XGB to make the decision as to what values to impart for each missing
value. The only information provided by this imputation method to the algorithm is whether the value is
missing. Unlike the other imputation methods, missing indicator imputation does not give a predetermined,
actual value. It allows the XGB to take advantage of its series of boosted trees to optimize what and how those
missing observations are incorporated. While performance is not as good as if no data were missing, Figure
12 shows the marginally better performance of missing indicator imputation across all methods considered.
Better performance is also observed for the LC data set in 13 and GAM global in Figure 14.

Figure 12: Comparison of null imputation methods for linear data set

Observation 9: Single point imputation (i.e., decile, mean, and median imputation) all show very similar per-
formance.
All single point imputation methods replace missing values with “one” value. Mean and median imputations
are more similar among the three methods, as they are identical for symmetric distributions. Only in cases of
skewed data will median imputation outperform mean imputation (e.g., Lending Club data in 13). However,
even in distributions with outliers or skew, median imputation only trivially outperforms mean imputation.

Decile imputation has the largest departure from the performances of mean and median imputation, as it
is more granular, since it replaces the missing values with the mean within each decile. Decile imputation
performs marginally better in some scenarios (e.g., GAM global in Figure 14), but not significantly. We
can surmise in this case that the global interactions provide greater density of observations depending on
the structure of the additive component. For example, β9 max(x4, x5) is determined by whether x4 or x5 is
larger. Depending on how missing values were injected, there may be greater skew in their joint distribution.

Observation 10: Tree imputation has the most variable performance across data sets, and is not recommended
for use.
The wide range of performance metrics seen for tree imputation suggests that it should not be the preferred
imputation method. Our empirical results advise against the use of tree imputation in general, as other
imputation methods provide as good or better performance for both score value and variability. This is
supported by the algorithm of tree imputation, which builds a single decision tree for each feature to determine
the imputed values. A single decision tree is widely recognized as being highly variable [Breiman, 2001].
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Figure 13: Comparison of null imputation methods for LC data set

Figure 14: Comparison of null imputation methods for GAM global data set

The jumpy GAM local data set provides an excellent example of the highly variable nature, as see in Figure
15. The data includes local interactions, which result in either a zero or non-zero value. This is quite striking
in conjunction with the random choice of introducing missing values, as different missing rates among the
local regions can highly influence imputed values and, as a result, model performance.

3 Limitations

The scope of this study was limited. There are a number of avenues to explore in future work, we will list some of
them in this section.

We assumed normal distributions for our continuous variables in our synthetic data, but there is opportunity to
explore skewed or other distributions in future work. Additionally, we used a limited number of features in the
synthetic data, which could be increased to provide comparisons in speed and computational complexity comparisons.
The limitation in feature diversity extends to the types and number of categorical features included, as well.

An additional limitation is the algorithm considered. We only examined these preprocessing methods with XGB
models. We note that our findings and observations only pertain to XGB models. Other machine learning algorithms
could be assessed as well (e.g., LightGBM, random forest, logistic regression, neural networks, etc.).

This study only considered a binary classification model trained on tabular data, and future work may consider
regression models, multiclass classification, and other data structures.
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Figure 15: Comparison of null imputation methods for jumpy GAM local data set

We would also like to note that our focus in this paper was on model performance, but the effect of these prepro-
cessing methods on model interpretability and/or explainability is critical to understand. This is particularly crucial
for fields such as financial services, where models are scrutinized by regulatory bodies to meet certain standards of
model explainability. Future work could explore the impact of these preprocessing methods on post-hoc interpretabil-
ity methods, as well as models that are inherently interpretable, such as Explainable Boosting Machines [Nori et al.,
2019], interpretable deep neural networks [Sudjianto and Zhang, 2021], etc.

4 Conclusions

Even though preprocessing is a major component of the modeling process, there are not many agreed upon standards
or benchmarks to objectively guide modelers on how to optimize this step of model development. Most organizations
rely on the experience of senior data scientists or engineers to choose the best techniques that fit the specific nuances
and constraints of their data. In larger organizations, changes to recommended “best-in-class” methods may be difficult
to percolate through the large population of quantitative analysts. Meanwhile, smaller organizations may not have the
resources to make such determinations.

To objectively deal with this roadblock, 2OS designed an experiment to look at a myriad of preprocessing techniques
and benchmark their performance against each other. Our study has helped highlight preferred preprocessing methods,
and identify less optimal ones. We approached this study in a pragmatic manner, with the intent of understanding the
behavior of various preprocessing methods from an empirical standpoint. The goal was to provide a better and deeper
understanding of the practical performance of popular feature selection, categorical encoding, and null imputation
methods.

We identified permutation-based feature importance and regularization as sub-optimal feature selection methods.
In fact, permutation-based feature importance methods tend to have high variability when it comes to model perfor-
mance. We would recommend avoiding these types of techniques. We also demonstrated that correlation coefficient
reduction methods are not preferred approaches. At the same time, we observed and explained why XGB’s feature
importance via gain is a preferred method over weight. Overall, XGB’s feature importance via gain showed the great-
est consistency of performance among methods selected for experimentation. However, the choice of feature selection
method is trivial for simple data structures, such as the synthetic linear data set.

We also determined that frequency encoding can be the favored categorical encoding method, but only in certain
circumstances. It is key to know and understand the complexity of the data structure before engaging in the categorical
encoding step during preprocessing. In the case of frequency encoding, greater complexity in the data resulted in
higher performance, in comparison to poorer performance for more rigidly structured data. We were also able to
tangibly demonstrate the relationship between Helmert coding and OHE. Generally speaking, there was no universally
preferred categorical encoding method.

We established the dominance of missing indicator imputation among the imputation methods considered in this
paper. We also illustrated the very similar behavior of single point imputation methods (i.e., decile, mean, and median
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imputations). Finally, we showed that tree imputation often resulted in highly variable and unstable model perfor-
mance.
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A Methodology

A test and control structure was used to run this experiment. The control group data sets had standard preprocessing
techniques applied, whereas the test group data sets had experimental preprocessing techniques applied (with standard
preprocessing done for areas unrelated to the test). Standard preprocessing techniques included enforcing column
consistency between train and validation data sets, standardizing numeric columns, and one hot encoding categorical
columns. The experimental methods used are described further in Appendix C.

After training and validation data sets for both control and test groups were appropriately preprocessed, an XGBoost
classifier was trained and tuned. We used Bayesian hyperparameter optimization for tuning a few of the most important
hyperparameters for our XGB classifier: gamma, learning rate, max depth, and number of estimators [Snoek et al.,
2012]. Model performance was captured by calculating a number of metrics, but the final evaluation focused on using
AUC. For our synthetic datasets, our benchmark was the “oracle” AUC. In this case, oracle refers to the best possible
performance that the model could have if it knew the true, underlying probabilities. This is assessed based on the true
response (i.e., probabilities) and the generated classes 0 and 1.

In order to accurately gauge the impact each method had on model performance, control and test groups were run
over multiple iterations to observe the degree of variance. In all cases, plots were created by calculating the mean and
variance of the multiple iterations, and are shown as mean ± 2 · standard deviation. In some cases, the training and
testing AUCs are plotted together to assess the severity of a model’s overfit behavior.

B Data

Working with real-world data sets can be difficult when trying to benchmark performance for complex methods due
to not knowing the true, underlying behavior of the data. Without controlling for the distribution of each feature and
fully understanding the underlying data distribution, it is difficult to make generalized conclusions. In addition to
using real-world data from Lending Club, we created three different types of synthetic data sets.

B.1 Synthetic Data Generation

By creating our own data sets, we are able to control the behavior within a single variable, as well as relationships
across multiple variables. This means the impact and contribution of each variable is predetermined and can be
anticipated. Each data set has a specific set of coefficients and each feature was generated based on a standard normal
distribution. The response variable was generated from a predetermined data generating function. Each data set had a
sample size of 250K.

Each experiment had unique factors that made distinct characteristics of a synthetic data set more/less important.
Multiple data generation procedures were implemented to allow each experiment to use a custom group of synthetic
data sets. Taking into account the unique factors across experiments, the data generation procedure consisted of four
major parts:

1. Assigning a functional form,
2. Generating coefficients,
3. Generating feature values, and
4. Creating response variable.

There were three basic functional forms that were used to derive more complex forms across data sets from each ex-
periment: linear, generalized additive model with global interactions (GAM global), and a jumpy generalized additive
model with local interactions (jumpy GAM local), which were borrowed from Liu et al. [2022]. Global interactions re-
fer to functional forms that affect the entire feature space, while local interactions are only present in specific portions
of the feature space.

Linear additive model:
f(x) = β1x1 + ...+ β10x10 (1)

GAM with global interactions:
f(x) = β1|x1|+ β2x

2
2 + β3 log(|x3|+ 1)

+ exp(β4x4) + (β5|x5|+ 1)−1 + β6x1x2

+ β7|x1x2x3|+ β8 log(|x3 + x4 + x5|+ 1)

+ β9 max(x4, x5) + exp[β10(x5 − x3)]

(2)

14
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Jumpy GAM with local interactions:

f(x) = β1|x1| · I(|x1| < 2) + β2x
2
2 · I(x2 > 1)

+ β3 log(|x3|+ 1) · I(|x3| > 1) + exp[β4x4] · I(x4 < 0)

+ (β5|x5|+ 1)−1 + β6 max(1, x6 + x7) + β7I(x7 < 1)

+ β8I(|x8| > 2) + β9x9 · I(x9 < −1) + β10 max(0, x10)

(3)

The function that defined each synthetic data set was made up of additive components that were weighted by a set
of generated coefficients. The number of coefficients utilized depended on the structure and complexity of the specific
type of function. Each coefficient ci was created by using NumPy’s random number generator, where ci ∈ [−3, 3] for
i = 1, ..., n [Harris et al., 2020].

Additionally, the number of features created was dependent on the specific response function for each data set.
A numeric feature can be represented by any set of scalar values with a fixed underlying distribution. The numeric
features in our synthetic data sets follow a multivariate normal distribution. Correlation between feature pairs was also
introduced by passing in a block-diagonal covariance matrix Σ we created, where each pair had a correlation r = 0.5.
For example, with 10 features, Σ would be:

Σ =



1 r 0 0 0 0 0 0 0 0
r 1 0 0 0 0 0 0 0 0
0 0 1 r 0 0 0 0 0 0
0 0 r 1 0 0 0 0 0 0
0 0 0 0 1 r 0 0 0 0
0 0 0 0 r 1 0 0 0 0
0 0 0 0 0 0 1 r 0 0
0 0 0 0 0 0 r 1 0 0
0 0 0 0 0 0 0 0 1 r
0 0 0 0 0 0 0 0 r 1


(4)

In cases of data sets with an odd number of features, the covariance matrix still exhibits a block-diagonal structure,
but a variable independent of any other features.

A categorical feature was also included in the null imputation and categorical encoding experiments. This was
implemented by building each data set from the segment level, where each segment was defined by the categorical
feature. Only a single categorical feature was used, so each distinct value represented a unique segment in the data.
We expand on the details of our approach on implementing the categorical feature in the subsequent sections below.

Additionally, “noise” features were introduced to the data set as way to deceive the XGB algorithm. These were
numeric features that were produced using a random number generator, and did not contribute to the underlying
function of the data set.

The response variable for our data sets were calculated by mapping feature values to corresponding terms for a given
function. The binary response y was determined by using a Bernoulli distribution with probability P (Y = 1|x) =
p(x), which is given by a sigmoid transformation (see Eq. 5). To minimize bias in our models, each data set was
inspected to ensure classes were balanced.

f(x) = log

(
p(x)

1− p(x)

)
(5)

As each group of preprocessing methods have different goals, the synthetic data sets used were customized to each
preprocessing objective. We will go through the modifications for each group of methods below. Overall, 108 data
sets were generated:

• Linear: 30 training sets, 3 validation (i.e., testing) sets, and 3 data sets for hyperparameter optimization
• GAM Global: 30 training sets, 3 validation sets, and 3 data sets for hyperparameter optimization
• Jumpy GAM Local: 30 training sets, 3 validation sets, and 3 data sets for hyperparameter optimization

Null Imputation
The null imputation experiment used the most basic procedure for generating synthetic data. There were
three types of data sets, and their corresponding functional forms mimicked the basic forms described above
in Equations 1, 2, and 3.
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After each data set was created, three features were chosen to have missing values inserted in-place with
a null-rate of 50%. Tables 4 and 5 show toy examples of the original (no missing) and modified data sets
(injected missing values). In this case, numeric features 2 and 3 were chosen as the designated variables to
inject missing values. At a 50% null-rate, this means that two of the four observations will become missing
(i.e., NA).

Numeric Feature 1 Numeric Feature 2 Numeric Feature 3 Numeric Feature 4

0.34 0.04 0.28 0.81
0.67 0.76 0.60 0.68

0.85 3 0.71 0.92 0.45
0.50 0.42 0.59 0.86

Table 4: Toy original data set with no missing values

Numeric Feature 1 Numeric Feature 2 Numeric Feature 3 Numeric Feature 4

NA NA 0.28 0.81
0.67 NA 0.60 0.68
NA 3 0.71 NA 0.45
0.50 0.42 NA 0.86

Table 5: Toy modified data set with injected missing values

Table 6 provides a summary of the structural components for the created data sets for the null imputation
experiment. The categorical feature was chosen to include five categories or segments. Ten or five features
contributed to the response, depending on the data set type, while five features were included noise variables.
In total, either 15 or 10 features were included in the final data set.

Data Set Type Coefficients Numeric Features Noise Features Segments

Linear 10 10 5 5
GAM Global 10 5 5 5

Jumpy GAM Local 10 10 5 5

Table 6: Summary description of each data set used in the null imputation experiment

Categorical Encoding
The data sets produced in this experiment resembled the original functional forms. However, due to the
importance of a categorical feature being introduced, they utilized indicator functions I(·) to act as “gate-
keepers” in order to create larger additive sub-components in the data set. Since our models were XGB
classifiers, this structure reinforced the necessity for our models to utilize the categorical feature to accurately
predict the response variable.

Since the categorical encoding synthetic data were structurally different, we include the modified versions
(see Equations 6, 7, and 8) below. Note that these are still very similar to Equations 1, 2, and 3.

Linear additive model (categorical encoding):

f(x) = I(xcat1 = 1) ∗ (β1x1 + β2x2 + β3x3)

+ I(xcat2 = 1) ∗ (β4x4 + β5x5 + β6x6)

+ I(xcat3 = 1) ∗ (β7x7 + β8x8 + β9x9 + β10x10)

(6)
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GAM with global interactions (categorical encoding):

f(x) = I(xcat1 = 1) ∗ (β1|x1|+ β2x
2
2 + β3 log(|x3|+ 1))

+ I(xcat2 = 1) ∗ (exp(β4x4) + (β5|x5|+ 1)−1 + β6x1x2)

+ I(xcat3 = 1) ∗ (β7|x1x2x3|+ β8 log(|x3 + x4 + x5|+ 1)

+ β9 max(x4, x5) + exp[β10(x5 − x3)])

(7)

Jumpy GAM with local interactions (categorical encoding):

f(x) = I(xcat1 = 1) ∗ (β1|x1| · I(|x1| < 2) + β2x
2
2 · I(x2 > 1) + β3 log(|x3|+ 1) · I(|x3| > 1))

+ I(xcat2 = 1) ∗ (exp[β4x4] · I(x4 < 0) + (β5|x5|+ 1)−1 + β6 max(1, x6 + x7))

+ I(xcat3 = 1) ∗ (β7I(x7 < 1) + β8I(|x8| > 2) + β9x9 · I(x9 < −1) + β10 max(0, x10))

(8)

Table 7 provides a summary of the structural components for the created data sets for the categorical
encoding experiment. The overall structure is very similar to the components described in Table 6, with the
exception of the number of segments or categories chosen. In this case, the categorical feature was chosen
to include three segments. The remaining components are the same. Ten or five features contributed to the
response, depending on the data set type, while five features were included noise variables. In total, either 15
or 10 features were included in the final data set.

Data Set Type Coefficients Numeric Features Noise Features Segments
Linear 10 10 5 3

GAM Global 10 5 5 3
Jumpy GAM Local 10 10 5 3

Table 7: Summary description of each data set used in the categorical encoding experiment

Feature Selection
Similar to categorical encoding, the synthetic data sets that belonged the feature selection experiment ex-
panded on the foundational functional forms in 6, 7, and 8. The functions for these data sets were augmented
to force our models to distinguish the relative importance among the features. This was accomplished by
grouping terms in the functional form and using a coefficient to act as a weight of importance for that group.
To avoid unnecessary complexity, the structure of terms across each group were identical, but the individual
features values and coefficients were distinct.

Since the feature selection synthetic data were structurally different, we include the modified versions (see
Equations 9, 10, and 11) below. Note that these are still very similar to Equations 1, 2, and 3. The largest
difference is the combination of three versions g(x), g′(x), and g′′(x) of the base functions that form the
weighted sum (i.e., the response) f(x).
Linear additive model (feature selection):

g(x) = β1x1 + ...+ β10x10

g′(x) = β11x11 + ...+ β20x20

g′′(x) = β21x21 + ...+ β30x30

f(x) = β31 · g(x) + β32 · g′(x) + β33 · g′′(x)

(9)

GAM with global interactions (feature selection):

g(x) = β1|x1|+ β2x
2
2 + β3 log(|x3|+ 1)

+ exp(β4x4) + (β5|x5|+ 1)−1 + β6x1x2

+ β7|x1x2x3|+ β8 log(|x3 + x4 + x5|+ 1)

+ β9 max(x4, x5) + exp[β10(x5 − x3)]

g′(x) = β11|x6|+ ...+ exp[β20(x10 − x8)]

g′′(x) = β21|x11|+ ...+ exp[β30(x15 − x13)]

f(x) = β31 · g(x) + β32 · g′(x) + β33 · g′′(x)

(10)
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Jumpy GAM with local interactions (feature selection):

g(x) = β1|x1| · I(|x1| < 2) + β2x
2
2 · I(x2 > 1)

+ β3 log(|x3|+ 1) · I(|x3| > 1) + exp[β4x4] · I(x4 < 0)

+ (β5|x5|+ 1)−1 + β6 max(1, x6 + x7) + β7I(x7 < 1)

+ β8I(|x8| > 2) + β9x9 · I(x9 < −1) + β10 max(0, x10)

g′(x) = β11|x11| · I(|x11| < 2) + ..+ β20 max(0, x20)

g′′(x) = β21|x21| · I(|x21| < 2) + ..+ β30 max(0, x30)

f(x) = β31 · g(x) + β32 · g′(x) + β33 · g′′(x)

(11)

Table 8 provides a summary of the structural components for the created data sets for the feature selection
experiment. The structural components in this case are very different than what seen for null imputation and
categorical encoding. In this case, there was no categorical feature. Thirty or fifteen features contributed to
the response, depending on the data set type, while 25 or 10 features were included noise variables. In total,
either or 10 features were included in the final data set.

Data Set Type Coefficients Numeric Features Noise Features Segments

Linear 33 30 25 0
GAM Global 33 15 10 0

Jumpy GAM Local 33 30 25 0

Table 8: Summary description of each data set used in the feature selection experiment

B.2 Lending Club Data

Synthetic data allows for greater control for the data environment, but real-world data was still needed to properly
explore the full effects of utilizing each method. Real-world data sets can be considered a more representative test of
how a model will perform in production-level environments. Unlike synthetic data, the interactions or behaviors that
features display can occur in unpredictable manners, with greater heterogeneity than would be seen in human-made
data. This can expose a model to unforeseen circumstances or scenarios that would not have been seen otherwise.

For this experiment we used “Lending Club Loan Data,” which is a publicly available data set [Kaggle, 2021].
Lending Club (LC) is a company that offers peer-to-peer personal loans. This data set contains anonymized loan data
on customers that were issued loans between 2007 and 2015. It includes fields like credit score, debt-to-income ratio
(DTI), term, months since last delinquency. Loan status is the target variable, which is categorized as “Charged-off”
(i.e., account is considered as a loss) or “Current.”

For the LC data, in addition to the standard preprocessing that the experiment would handle, some initial preprocess-
ing was performed to deal with unnecessary variables and potential sources of data leakage. This included variables
with extremely high null rates (i.e., 99%), identity variables (i.e., account number), and variables related to current
delinquency (i.e., payment plan status). After these types of variables were removed, the data set was ready to be used
in the experiment.

Overall, the LC data set includes 2.26 million rows with 70 numeric and 10 categorical features. Of the 80 available
features, 80% of features have missing values.

C Methods

We provide an overview of experimental methods utilized. The methods are broadly categorized into three groups:

1. Feature selection,

2. Categorical handling, and

3. Null imputation
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C.1 Feature Selection Methods

Reducing the number of irrelevant input features is a key task for machine learning models to perform at optimal
levels. By removing “noisy” features, the model will only utilize important variables to make predictions. Along with
improvements in performance, using a subset of features can also help to reduce training time and improve model
interpretability. The methods reviewed include:

• Pearson correlation coefficient reduction,
• Spearman’s rank correlation coefficient reduction,
• Variable selection based on XGBoost importance [Chen and Guestrin, 2016],
• Regularization via LASSO regression [Tibshirani, 1996],
• Variable selection based on permutation-based feature importance [Breiman, 2001], and
• Recursive feature elimination [Guyon et al., 2002].

Pearson Correlation Reduction Pearson correlation reduction uses a two-step approach to remove unimportant fea-
tures from the data. The first step deals with multicollinearity, while the second step looks at the correlation
between a feature and the target variable. To deal with potential multicollinearity in the data, a correlation
matrix is created that measures the observed correlation rab of a feature a with another feature b. This is done
for every pair of features.

Any feature pairs that have a correlation above some specified threshold are candidates for removal. Only
a single feature from the pair needs to be removed, so the feature in the pair that has the lowest correlation
with the target variable y dropped. This process is repeated for all feature pairs. After that, for the remaining
list of features, the features with the highest correlation with the target variable (the top N features) are kept.
The formula for calculating the Pearson correlation coefficient is given in Eq. refeq:pearson.

rab =

∑
i (ai − ā)

(
bi − b̄

)√∑
i (ai − ā)

2 ∑
i

(
bi − b̄

)2 (12)

Explicitly dealing with multicollinearity is a nice benefit of this method, but having to calculate an entire
covariance matrix measure correlation can become time consuming as the number of features increases.

Spearman’s Rank Correlation Reduction Correlation reduction can also be performed using Spearman’s rank cor-
relation coefficients, rather than Pearson correlation coefficients. The formula for calculating Spearman’s
rank correlation coefficient is based on the Pearson correlation coefficient formula, but uses rank variables.
Rather than using the original values, they are converted to ranks. This means that rank variables R(ai)
and R(bi) are used in place of the original variables ai and bi in Eq. 12. Similar to the Pearson correla-
tion coefficient, dealing with multicollinearity can be computationally expensive as the number of features
increases.

Regularization – LASSO Regression LASSO (Least Absolute Shrinkage and Selection Operator) Regression (L1
regularization) is a linear model that adds a unique property to its cost function: a penalty term λ that relates
to the size of the coefficients in its equation [Tibshirani, 1996]. The higher the penalty term λ, the larger the
constraint on the cost function. This results in an absolute reduction of the coefficient values. L1 regulariza-
tion is used for feature selection because it will reduce the coefficients of less important features all the way
to 0, which effectively removing them from the model. The cost function used for L1 regularization is given
in Eq. 13.

f(x) =
∑
i

yi −
∑
j

xijβj

2

+ λ
∑
j

|βj | (13)

Unlike other feature selection methods that need to build multiple models to narrow down the top features,
this method only builds one, which lead to relatively lower computing resources being leveraged.

XGBoost Importance XGBoost’s internal feature selection has the capability to output a list of importance scores for
each score, from which the top N important features can be identified [Chen and Guestrin, 2016]. XGBoost
measures feature importance using three different mechanisms: gain, weight, and coverage. This experiment
explored gain and weight. Gain is roughly calculated by looking at the increase in purity (i.e., ratio class
in each node) of the children nodes when a feature is used as a split in the tree. If the observations in a
parent node have balanced classes, and the resulting observations in the children nodes have very unbalanced
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classes, then that feature is considered to contribute to a larger gain. Weight is the number of splits that a
feature had across all trees generated. The more times a feature is used to split across the trees, the larger the
weight of that feature.

Five-fold cross validation, with 60% train splits, was used to fit the model, and normalized feature im-
portance scores were calculated. The scores were normalized by dividing the importance score for a single
feature by the sum of scores for all features. The average score was then calculated across all folds, and the
top N features were returned.

This method uses multiple metrics to measure how a feature contributes to the prediction made by the
model. Depending on the type of features in the data set, this can be a positive or a negative. If the number
of unique values for a feature is low, and the tree depth is high, then the number of times it can be used in a
split in the tree will be limited and cause its weight metric to be dampened. This dampening can occur even
if the feature is still important, which is certainly not ideal for the model developer.

Permutation-Based Feature Importance Permutation-based feature importance measures importance by remov-
ing the predictive power of individual features and scoring the relative shift in performance of the model
[Breiman, 2001]. First, the entire data set is fitted to a model and scored. The performance of this model is
stored as the benchmark for future calculations. Next, a single feature is chosen, and its values are randomly
shuffled. New predictions are generated, and the new performance is measured. The new performance score
should be lower than the benchmark, and the difference between the two is the feature importance score.
The importance of the feature is directly related to the magnitude in difference between the two scores. This
process is repeated for all features in the data set in isolation (only a single feature’s values are shuffled per
step).

The number of features scales with the number of models that need to be fitted for this method. Depending
on the modelling technique used, computation can be expensive.

RFE Recursive Feature Elimination (RFE) is a brute-force wrapper method that eliminates the lowest performing
features from a data set in a step-wise manner [Guyon et al., 2002]. Being a wrapper method, RFE fits an
ML model to a data set, scores the importance of each feature, and then removes the features with the lowest
contribution. This is an iterative process that continues until the specified minimum number of features
threshold is met. The size of the steps (i.e., the number of features removed per iteration) is another important
parameter than can have a large effect on training time and performance.

RFE is a very simple algorithm that uses a large number of iterations to come up with a result. Because of
this, computational cost can be expensive, especially as the number of features scale up.

C.2 Categorical Handling Methods

ML algorithms only accept numerical inputs, so for an algorithm to learn the underlying patterns and relationships
in the input data, every feature in that data set needs to be represented as a numeric variable. Due to this constraint,
numerous encoding methods have been developed to translate categorical variables into numeric ones.

There are two different kinds of categorical variables: nominal and ordinal. Nominal variables have categories
that share no intrinsic ordering between them (e.g., red, blue, yellow), while ordinal categories share a clear ordering
between each category (e.g., small, medium, large). All the techniques we considered handle nominal variables,

• One-hot encoding,

• Helmert coding [Sundström, 2010],

• Frequency encoding, and

• Binary encoding

A comparison of a select number of these methods was done by Potdar et al. [2017].

One-Hot Encoding One-hot encoding (OHE) converts a categorical feature into N − 1 binary variables, where N
is the number of categories in the feature. Each new binary column corresponds to the original categorical
feature where a “1” represents the presence of that category in the original feature. There are only N − 1
columns created since the final category is the “base case” and is interpreted as the scenario when all other
categories are 0. An example of OHE is given in Table 9.
OHE is a straightforward technique for handling categorical variables, but it can have issues. When using
this method for variables with high cardinality, OHE can become memory intensive and lead to high dimen-
sionality within the data.
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Category OHE
Category 1

OHE
Category 2

OHE
Category 3

Category 1 1 0 0
Category 2 0 1 0
Category 3 0 0 1

Table 9: Example of one-hot encoding

Helmert Coding (Reverse) Helmert coding works by comparing a specific level of a categorical variable to the mean
of the subsequent categories for that variable. A contrast is a linear combination (weighted sum) of statistics
[Sundström, 2010]. Each contrast here is represented by the mean of the target variable for a specific level,
subtracted by the mean of the means of the target variable for all categories that come after that level. For our
implementation, we used a “reversed” form of Helmert coding in which previous categories are used as the
comparison point instead of subsequent categories. See Table 10 for an example.

Category Helmert
Level 1

Helmert
Level 2

Helmert
Level 3

Category 1 -0.5 -0.33 -0.25
Category 2 0.5 -0.33 -0.25
Category 3 0 0.66 -0.25
Category 4 0 0 0.75

Table 10: Example of Helmert (Reverse) coding

Ideally this method would be used for ordinal categorical variables since the resulting values are rela-
tive quantitative differences between categories, but it can still be utilized for nominal variables. The only
discrepancy is that each value will be evaluated as a magnitude, and not discretely.

Frequency Encoding Frequency encoding is a technique that replaces the literal value of a category with the proba-
bility of that category occurring within the data set. For example, if a data set with 100 rows had a categorical
variable with 3 unique categories, where category 1 has 25 occurrences, category 2 has 60 occurrences, and
category 3 has 15 occurrences, the newly created adjacent “frequency” column would use 0.25, 0.60, and 0.15
as the new respective corresponding values. For a categorical feature with 2 unique values, where category 1
has 72 occurrences and category 2 has 28 unique occurrences, the newly created adjacent frequency column
would use 0.72 and 0.28 as the new respective corresponding values.See Table 11 for an example.

Feature Category Frequency

Categorical Feature 1
Category 1 0.25
Category 2 0.60
Category 3 0.15

Categorical Feature 2 Category 1 0.72
Category 2 0.28

Table 11: Example of frequency encoding

A big advantage to this technique is that it is simple and cost efficient to implement, while also keeping
the size of the feature space constant. One major drawback from this method is the scenario when duplicate
probabilities occur because the resulting values no longer serve as a way to differentiate unique segments.

Binary Encoding Binary encoding represents each unique category as binary code across columns in the data set.
In application, the categorical variable first needs to be transformed into an ordinal variable (no intrinsic
relationship, simply need numeric values). The ordinal value for that category is then translated into binary
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code by utilizing the least number of columns necessary to represent every category in the feature. See Table
12 for an example.

Categorical Feature 1 Binary Categorical 1 Binary Categorical 2
Category 1 0 1
Category 2 1 0
Category 3 1 1

Table 12: Example of binary encoding

Binary encoding is a memory efficient method for dealing with categorical variables that have high cardi-
nality. It is able to represent many categories with just a few columns being added to the data set.

C.3 Null Imputation Methods

Null or missing values can occur when there is absent information within a data set. Commonly referred to with “NA”,
null values are a common obstacle in machine learning for a few reasons. First, most machine learning algorithms
are not able to handle missing values appropriately and will fail to fit a model if null values are present. Second, the
presence of missing values may have negative impacts on model performance if those observations contain valuable
information that is not present in the rest of the data set. Ignoring or deleting observations that have missing values
may not be a luxury the analysis can afford (i.e., limited data) and can result in biasing the data set due to eliminating
underlying behavior. There is debate on which methods are best for optimizing model performance. We will discuss
several techniques in this section:

• Mean imputation,
• Median imputation,
• Missing indicator imputation,
• Decile imputation,
• Clustering imputation [Lloyd, 1982], and
• Decision tree imputation

To demonstrate the above methods, we will use a toy data set, shown in Table 13.

Mean Imputation This is a simple imputation method that replaces missing values for a specific feature with the
mean of all non-missing values in the same feature. The toy data set in Table 13 shows missing values that
are imputed via mean imputation, resulting in the data given in Table 14.

While mean imputation is simple and easy to implement, the method does have some drawbacks. First,
if the data is not normally distributed, using the mean to impute missing values may cause a change in the
underlying distribution of the data. Additionally, if the percent of data missing is large enough, then mean
imputation may lead to an underestimation of the feature’s variance.

Median Imputation Similar to mean imputation, this method replaces all missing values in a feature with the median
value of all non-missing values in the same feature. The toy data set in Table 13 shows missing values that
are imputed via median imputation, resulting in the data given in Table 15.

Numeric Feature 1 Numeric Feature 2
100 NA
200 0.30
150 0.60
NA 0.25
300 0.80
NA 0.65

Table 13
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Numeric Feature 1 Numeric Feature 2
100 0.52
200 0.30
150 0.60

187.5 0.25
300 0.80

187.5 0.65

Table 14: Example of mean imputation of the toy data set from Table 13

Numeric Feature 1 Numeric Feature 2
100 0.6
200 0.30
150 0.60
175 0.25
300 0.80
175 0.65

Table 15: Example of median imputation of the toy data set from Table 13

Median imputation is a simple and fast approach for dealing with null values. Similar to mean imputation,
if the percent of missing data is high enough, there may be a reduction in the feature’s variance.

Missing Indicator Imputation This is a simple technique where a binary feature is created to indicate whether the
corresponding feature has a missing value present. The toy data set in Table 13 shows missing values that are
imputed via missing indicator imputation, resulting in the data given in Table 16.

Numeric Feature 1 Numeric Feature 2
Original Missing Indicator Original Missing Indicator

100 0 -9999 1
200 0 0.30 0
150 0 0.60 0

-9999 1 0.25 0
300 0 0.80 0

-9999 1 0.65 0

Table 16: Example of missing indicator imputation of the toy data set from Table 13

The advantage of the indicator column is that it is able to highlight differentiating behavior that the presence
of a missing value represents, but that is only if the missing value is not simply a random occurrence. Another
drawback can be the scenario where many features have small missing rates, which increases dimensionality.

Decile Imputation This is an imputation method that takes advantage of the relationship between the target variable
and any missing features. For classification, the goal is to group the observations in the feature into percentile
groups and create an additional group for missing values. We focus on deciles. For each group of observations
(including the missing group), the probability of the target class occurring is calculated. The group with a
target probability closest to the target probability of the missing group is chosen, and the median value for
that group is used as the imputation value for that feature.

This is a flexible method that can be used for either numerical or categorical variables depending on the
statistic (e.g., mean, median, mode, etc.) used for the imputation value. The biggest advantage of this
approach is that it utilizes the relationship of the target variable to try and associate missing values with a
corresponding segment in the feature. One drawback of this method is that it assumes missing values have a
strong relationship with other segments in the data, but if that is not the case (i.e., missing values are due to
data entry errors), the feature becomes biased towards the segment chosen.
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Clustering Imputation Clustering imputation assigns clusters to every observation in the data set. Each feature with
a missing value is then isolated and the average value of a cluster of observations within a feature is mapped.
Clusters are identified using k-means clustering [Lloyd, 1982]. The mean value for a cluster is then used as
the imputation value for any missing values assigned to the same cluster in that feature. The toy data set from
Table 17 shows missing values, including data clusters, that are imputed via clustering imputation, resulting
in the data given in Table 18.

Numeric Feature 1 Numeric Feature 2 Cluster
100 NA 1
200 0.30 2
150 0.60 2
NA 0.25 2
300 0.80 1
NA 0.65 1

Table 17: Toy data set to demonstrate clustering imputation

Numeric Feature 1 Numeric Feature 2 Cluster
100 0.725 1
200 0.30 2
150 0.60 2
175 0.25 2
300 0.80 1
200 0.65 1

Table 18: Example of clustering imputation of the toy data set from Table 17

The advantage of clustering imputation is it utilizes information outside of the feature the missing value
appears in. It assigns a missing value to the appropriate segment by using information from the rest of the data
set, and then uses internal information about the feature to assign a specific value. Since this is a technique
that uses a model to extract information from the data, it is high on the spectrum of computational cost relative
to other methods.

Decision Tree Imputation This is another technique that uses a model to extract more information out of the data to
determine an imputation value. Like decile imputation, the goal is to create unique segments or groups for an
individual group and compare the average target value to a grouping of the missing value’s average target.

This technique uses a decision tree with a single feature to create the groupings. The decision tree is a
classification and regression tree or CART [Breiman et al., 1984]. A t-test is performed to determine the
similarity between each leaf node and the missing group’s average target values. The median feature value
of the leaf node with the smallest t-score is used as the imputation value for that feature, and the process is
repeated across all features.

Note that using a decision tree adds the overhead of training a model for every feature.
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